jueves, 9 de diciembre de 2010

Vulcanismo



Fuente de lava de 10 metros de altura en un volcán de Hawái, (Estados Unidos).

Volcán Tungurahua Ecuador (2003).

Un volcán (del dios mitológico Vulcano) es un conducto que pone en comunicación directa la parte superior de la corteza sólida con los niveles inferiores de la misma. Es también una estructura geológica por la cual emergen el magma (roca fundida) en forma de lava y gases del interior del planeta. El ascenso ocurre generalmente en episodios de actividad violenta denominados «erupciones», la cuales pueden variar en intensidad, duración y frecuencia; siendo desde conductos de corrientes de lava hasta explosiones extremadamente destructivas.

Generalmente adquieren una característica forma cónica que es formada por la presión del magma subterráneo así como de la acumulación de material de erupciones anteriores. Encima del volcán podemos encontrar su cráter o caldera.

Los volcanes se pueden encontrar en la tierra así como en otros planetas y satélites, algunos de los cuales están formados de materiales que consideramos "fríos"; estos son los criovolcanes. Es decir, en ellos el hielo actúa como roca mientras la fría agua líquida interna actúa como el magma; esto ocurre -por ejemplo- en la fría luna de Júpiter llamada Europa.

Por lo general, los volcanes se forman en los límites de placas tectónicas, aunque hay excepciones llamadas puntos calientes o hot spots ubicados en el interior de placas tectónicas, como es el caso de las islas Hawái. También existen volcanes submarinos que pueden expulsar el material suficiente para formar islas volcánicas.

Los geólogos han clasificado los volcanes en tres categorías: volcanes en escudo, conos de cenizas y conos compuestos (también conocidos como estratovolcanes).


Estructura básica


Esquema de una erupción volcánica. 1. Pluma volcánica. 2. Lapilli. 3. Fuente de lava. 4. Lluvia de ceniza volcánica. 5. Bomba volcánica. 6. Colada de lava. 7. Estratos de lava y de ceniza. 8. Estrato geológico. 9. Sill. 10. Chimenea volcánica. 11. Cámara magmática. 12. Pico volcánico.

El conducto que comunica el volcán con las profundidades generalmente forma una reservatorio de magma en el interior de la corteza sólida. Esta cámara acumulam,m,bj grandes cantidades de materia y presión que es capaz de levantar el terreno. El conducto que comunica esta cámara con la superficie se denomina chimenea. Se comunica directamente con la cima del edificio volcánico, donde está cráter.

Cuando ocurre la erupción, el magma generalmente se acumula en el cráter o caldera hasta desbordarse, formándose ríos y cuevas de magma que pueden fluir distancias de varias decenas de kilómetros hasta solidificarse. Durante algunas erupciones, según la fuerza de la misma, también pueden ocurrir algunos eventos sísmicos.

La presión del magma, junto el material acumulado de anteriores erupciones, suelen formar una montaña cónica en la superficie que puede alcanzar una altura variable de unas centenas de metros hasta varios kilómetros. Algunos volcanes, después de sufrir erupciones grandes, se colapsan formando enormes depresiones en sus cimas que superan el kilómetro de diámetro. Estas estructuras reciben el nombre de calderas capaz de acumular agua pluvial.

Ningún volcán es idéntico a cualquier otro, ya que algunos apenas han erupcionado, mientras que otros mantienen una corriente constante de lava, como es el caso del volcán de Hawáimis nalgas estan llenas de granos.

Volcanes extraterrestres


Monte Olimpo, el volcán más grande del Sistema Solar situado en el planeta Marte.

La Tierra no es el único planeta del Sistema Solar que tiene actividad volcánica. Venus tiene un intenso vulcanismo con unos 500.000 volcanes. Marte tiene la cumbre más alta del sistema solar: el Monte Olimpo, un volcán dado por apagado con una base de unos 600 km y más de 27 km de altura. No obstante, este planeta parece ya no tener actividad volcánica apreciable.

Nuestra Luna está cubierta de inmensos campos de basalto, lo que sugiere que tuvo una corta pero considerable actividad volcánica que hoy muy probablemente está extinta.

Debido a las bajas temperaturas del espacio, algunos volcanes de nuestro sistema solar están formados de hielo que actúa como roca, mientras su agua líquida interna actúa como la magma; esto ocurre -por ejemplo- en la fría luna de de Júpiter llamada Europa. Estos reciben el nombre de criovolcáns, de los cuales hay también en Encélado. La Voyager 2 descubrió en agosto de 1989, sobre Tritón, rastros de criovulcanismo y géiseres. La búsqueda de vida extraterrestre se ha interesado en buscar rastros de vida en sistemas criovolcánicos donde hay agua líquida y por ende, una fuente de radiación en calor considerable; estos son elementos esenciales para la vida.

Existen volcanes un poco más similares a los terrestres, sobre otros satélites de Júpiter como en el caso de Ío. La sonda Voyager 1 permitió fotografiar en marzo de 1979 una erupción en Ío. Los astrofísicos estudian los datos de esta cosecha fantástica que extiende el campo de estudio de la vulcanología. El conocimiento del fenómeno tal como se produce sobre la Tierra pasa en adelante por su estudio en el espacio.

La temperatura y composición química de los volcanes del sistema solar varían considerablemente entre los planetas y los satélites. Además, el tipo de materiales arrojados en sus erupciones es muy diferente de los arrojados en la Tierra.[1]

Actividad volcánica

La salida de productos gaseosos, líquidos y sólidos lanzados por las explosiones constituye los paroxismos o erupciones del volcán.

Los volcanes se pueden clasificar de diferentes maneras teniendo en consideración factores diversos. Con respecto a la frecuencia de su actividad eruptiva los volcanes pueden ser:

Volcanes activos


Emanaciones de vapor del cráter "Arenas" en el nevado del Ruiz. Septiembre de 1985, dos meses antes de la tragedia.

Los volcanes activos son aquellos que entran en actividad eruptiva. La mayoría de los volcanes ocasionalmente entran en actividad y permanecen en reposo la mayor parte del tiempo. Para bienestar de la humanidad solamente unos pocos están en erupción continua. El período de actividad eruptiva puede durar desde una hora hasta varios años. Este ha sido el caso del volcán de Pacaya. Los intervalos de calma entre erupciones pueden durar meses, décadas y en ocasiones hasta siglos. Sin embargo, no se ha descubierto aún un método seguro para predecir las erupciones.

Volcanes durmientes

Los volcanes durmientes son aquellos que mantienen ciertos signos de actividad como lo son las aguas termales y han entrado en actividad esporádicamente. Dentro de esta categoría suelen incluirse las fumarolas y los volcanes con largos períodos en inactividad entre erupción. Un volcán se considera activo si su última erupción fue antes de 25.000 años.

Volcanes extintos


Los volcanes extintos son aquellos que estuvieron en actividad durante períodos muy lejanos y no muestran indicios de que puedan reactivarse en el futuro. Son muy frecuentes, aunque la inactividad que las describe puede reactivarse nuevamente en muy raras ocasiones, estos volcanes generalmente han dejado de mostrar actividad desde hace muchos siglos antes de ser considerados extintos.

La actividad eruptiva es casi siempre intermitente, ya que los períodos de paroxismo alternan con otros de descanso, durante los cuales el volcán parece extinguido (Vesubio, Teide, Teneguía, Fuji, etc.). Consiste en el desplazamiento de las rocas ígneas o en estado de fusión, desde el interior de la corteza terrestre hacia el exterior. Estos materiales salen a la superficie terrestre como si fueran ríos de rocas fundidas, conformando un volcán activo, al impulso de los gases.

Tipos de erupciones volcánicas


La temperatura, composición, viscosidad y elementos disueltos de los magmas son los factores fundamentales de los cuales depende el tipo de explosividad y la cantidad de productos volátiles que acompañan a la erupción volcánica.

Hawaiano o efusivo

Sus lavas son bastante fluidas, sin que tengan lugar desprendimientos gaseosos explosivos; estas lavas se desbordan cuando rebasan el cráter y se deslizan con facilidad por la ladera del volcán, formando verdaderas corrientes que recorren grandes distancias. Por esta razón, los volcanes de tipo hawaiano son de pendiente suave. Algunas partículas de lava, al ser arrastradas por el viento, forman hilos cristalinos que los nativos llaman cabellos de la diosa Pelé (diosa del fuego). Son bastante comunes en todo el planeta.

Estromboliano o mixto


Erupción del Stromboli (Italia) en 1980.

Este tipo de volcán recibe el nombre del Stromboli, volcán de las islas Lípari (mar Tirreno), al Norte de Sicilia. Se originan cuando hay alternancia de los materiales en erupción, formándose un cono estratificado en capas de lavas fluidas y materiales sólidos. La lava es fluida, desprendiendo gases abundantes y violentos, con proyecciones de escorias, bombas y lapilli. Debido a que los gases pueden desprenderse con facilidad, no se producen pulverizaciones o cenizas. Cuando la lava rebosa por los bordes del cráter, desciende por sus laderas y barrancos, pero no alcanza tanta extensión como en las erupciones de tipo hawaiano.

Vulcaniano

Del nombre del volcán Vulcano en las islas Lípari. Se desprenden grandes cantidades de gases de un magma poco fluido, que se consolida con rapidez; por ello las explosiones son muy fuertes y pulverizan la lava, produciendo mucha ceniza, lanzada al aire acompañadas de otros materiales fragmentarios. Cuando la lava sale al exterior se solidifica rápidamente, pero los gases que se desprenden rompen y resquebrajan su superficie, que por ello resulta áspera y muy irregular, formándose lavas de tipo Aa. Los conos de estos volcanes son de pendiente muy inclinada.

Pliniano o vesubiano

Nombrado así en honor a Plinio el Joven, difiere del vulcaniano en que la presión de los gases es muy fuerte y produce explosiones muy violentas. Forma nubes ardientes que, al enfriarse, producen precipitaciones de cenizas, que pueden llegar a sepultar ciudades, como ocurrió con Pompeya y Herculano y el volcán Vesubio.

Se caracteriza por alternar erupciones de piroclastos con erupciones de coladas lávicas, dando lugar a una superposición en estratos que hace que este tipo de volcanes alcance grandes dimensiones. Otros volcanes de tipo pliniano son el Teide, el Popocatépetl y el Fujiyama.

Freato-magmático o surtseyano

Los volcanes de tipo freato-magmático se encuentran en aguas someras, o presentan un lago en el interior del cráter, o en ocasiones forman atolones. Sus explosiones son extraordinariamente violentas ya que a la energía propia del volcán se le suma la expansión del vapor de agua súbitamente calentado. Normalmente no presentan emisiones lávicas ni extrusiones de rocas. Algunas de las mayores explosiones freáticas son las del Krakatoa, el Kilauea y la Isla de Surtsey.

Peleano

De los volcanes de las Antillas es célebre la Montaña Pelada, ubicada en la isla Martinica, por su erupción de 1902, que destruyó su capital, Saint-Pierre.

La lava es extremadamente viscosa y se consolida con gran rapidez, llegando a tapar por completo el cráter formando un pitón o aguja; la enorme presión de los gases, sin salida, provoca una enorme explosión que levanta el pitón, o bien destroza la parte superior de la ladera. Así ocurrió el 8 de mayo de 1902, cuando las paredes del volcán cedieron a tan enorme empuje, abriéndose un conducto por el que salieron con extraordinaria fuerza los gases acumulados a elevada temperatura y que, mezclados con cenizas, formaron la nube ardiente que ocasionó 28.000 víctimas.

Erupciones submarinas

En el fondo oceánico se producen erupciones volcánicas cuyas lavas, si llegan a la superficie, pueden formar islas volcánicas.Las erupciones suelen ser de corta duración en la mayoría de los casos, debido al equilibrio isostático de las lavas al enfriarse, entrando en contacto con el agua, y por la erosión marina. Algunas islas actuales como las Cícladas (Grecia), tienen este origen.

Avalanchas de origen volcánico (Lahares)


Armero después de la tragedia.

Hay volcanes que ocasionan gran número de víctimas, debido a que sus grandes cráteres están durante el periodo de reposo convertidos en lagos o cubiertos de nieve. Al recobrar su actividad, el agua mezclada con cenizas y otros restos, es lanzada formando torrentes y avalanchas de barro, que cuentan con una enorme capacidad destructiva. Un ejemplo fue la erupción del Nevado de Ruiz (Colombia) el 13 de noviembre de 1985. El Nevado del Ruiz es un volcán explosivo, en el que la cumbre del cráter (5.000 msnm) estaba recubierta por un casquete de hielo; al ascender la lava se recalentaron las capas de hielo, formando unas coladas de barro que invadieron el valle del río Lagunilla y sepultaron la ciudad de Armero, con 24.000 muertos y decenas de miles de heridos.

Erupciones fisurales

Se originan en una larga dislocación de la corteza terrestre, que puede ser desde apenas unos metros hasta varios km. La lava que fluye a lo largo de la rotura es fluida y recorre grandes extensiones formando amplias mesetas, con 1 ó más km de espesor y miles de km². Un ejemplo de vulcanismo fisural es la meseta del Decán (India).

Volcán en escudo


Columnas de basalto de la «Calzada del Gigante» en Irlanda del Norte.

Cuando la lava expulsada por el volcán es fluida, de tipo hawaiano, el volcán adquiere una forma de una estructura amplia y abovedada, que por su apariencia se los denomina en escudo.

Un volcán en escudo está formado principalmente por lavas basálticas (ricas en hierro) y poco material piroclastico. El mayor volcán de la Tierra es el Mauna Loa, un volcán en escudo en las islas Hawái. El Mauna Loa nace en las profundidades del mar, a unos 5 km y se eleva sobre el nivel del mar por unos 4.170 m.

Los volcanes en escudo como el Mauna Loa se forman a lo largo de millones de años gracias a ciclos de erupciones de lava que se van superponiendo unas con otras.

El volcán de escudo más activo es el Kīlauea, localizado en la Isla de Hawái, al lado de Mauna Loa. En el período histórico el Kilauea ha entrado unas 50 veces en erupción y es, por lo tanto, el volcán de este tipo más estudiado.

El resultado de erupciones constantes durante millones de años ha dado lugar a la creación de las montañas más grandes de la Tierra (si se tiene en cuenta la altura contando desde la base en el lecho marino). Por ejemplo, el Mauna Loa, desde su base submarina hasta su cúspide, cuenta con una altura de 9,5 km, más alto que el monte Everest.

Los geólogos creen que las primeras etapas de formación de los volcanes en escudo consiste en erupciones frecuentes de delgadas coladas de basaltos muy líquidas. Además de estas erupciones también se producen erupciones laterales. Normalmente con el cese de cada fase eruptiva se produce el hundimiento del área de la cima. En las últimas fases, las erupciones son más esporádicas y la erupción piroclástica se hace más frecuente. A medida que esto sucede, las coladas de lava tienden a ser más viscosas, lo que provoca que sean más cortas y potentes. Así, va aumentando la pendiente de la ladera del área de la cima.

Los volcanes en escudo son muy comunes y también se han identificado en el sistema solar. El más grande conocido hasta la fecha es el Monte Olimpo, sobre la superficie de Marte, encontrándose también varios de estos volcanes sobre la superficie de Venus, aunque de apariencia más achatada.

Flujo piroclástico


Flujo piroclástico expulsado por el volcán Mayon en Filipinas.

Cuando las erupciones de un volcán llegan acompañadas de gases calientes y cenizas se produce lo que se conoce como flujo piroclástico o «nube ardiente». También conocida como avalancha incandescente, el flujo piroclástico se desplaza pendiente abajo a velocidades cercanas a los 200 km/h. La sección basal de estas nubes contienen gases calientes y partículas que flotan en ellos. De esta forma, las nubes transportan fragmentos de rocas que –gracias al rebote de los gases calientes en expansión– se depositan a lo largo de más de 100 km desde su punto de origen.

En 1902 una nube ardiente de un pequeño volcán llamado Monte Pelée en la isla caribeña de Martinica destruyó la ciudad portuaria de San Pedro. La destrucción fue tan devastadora que murió casi toda la población (unos 28.000 habitantes). A diferencia de Pompeya, que quedó enterrada en un manto de cenizas en un plazo de tres días y las casas quedaron intactas (salvo los techos por el peso de las cenizas), la ciudad de San Pedro fue destruida sólo en minutos y la energía liberada fue tal que los árboles fueron arrancados de raíz, las paredes de las casas desaparecieron y las monturas de los cañones se desintegraron. La erupción del Monte Pelée muestra cuan distintos pueden ser dos volcanes del mismo tipo.

Lahar

Los conos compuestos también producen coladas de barro llamadas lahar, una palabra de origen indonesio. Estos flujos se producen cuando las cenizas y derrubios volcánicos se saturan de agua y descienden pendiente abajo, normalmente siguiendo los cauces de los ríos. Algunos de los lahares se producen cuando la saturación es provocada por la lluvia, mientras que en otros casos cuando grandes volúmenes de hielo y nieve se funden por una erupción volcánica. En Islandia, el último caso se denomina jökulhlaup y es un fenómeno devastador.

Destrucciones importantes de lahares se dieron en 1980 con la erupción del Monte Santa Helena, en Estados Unidos, que a pesar de los destrozos producidos, no produjo muchas víctimas debido a que la región está poco poblada. Otro fue en 1985 con la erupción del Nevado del Ruiz, en Colombia, la cual generó un lahar que acabó con la vida de 25.000 personas.

Formas volcánicas relacionadas

Calderas



Caldera Aniakchak, en Alaska.

La mayoría de los volcanes presentan en su cima un cráter de paredes empinadas, por el interior. Cuando el cráter supera 1 km de diámetro se denomina caldera volcánica.

Las calderas son estructuras de forma circular y la mayoría se forma cuando la estructura volcánica se hunde sobre la cámara magmática parcialmente vacía que se sitúa por debajo. Si bien la mayoría de las calderas se crea por el hundimiento producido después de una erupción explosiva, esto no es así en todos los casos.

En el caso de los enormes volcanes en escudo de Hawái, las calderas se crearon por la continua subsidencia a medida que el magma se drenaba desde la cámara magmática durante las erupciones laterales. También las calderas de las islas Galápagos se han ido hundiendo por derrames laterales.

Las calderas de gran tamaño se forman cuando un cuerpo magmático granítico (félsico) se ubica cerca de la superficie curvando de esta manera las rocas superiores. Posteriormente, una fractura en el techo permite al magma rico en gases y muy viscoso ascender hasta la superficie, donde expulsa de manera explosiva, enormes volúmenes de material piroclástico, fundamentalmente cenizas y fragmentos de pumita. Estos materiales se denominan coladas piroclásticas y pueden alcanzar velocidades de 100 km/h. Cuando estos materiales se detienen, los fragmentos calientes se fusionan para formar una toba soldada que se asemeja a una colada de lava solidificada. Finalmente, el techo se derrumba dando lugar a una caldera. Este procedimiento puede repetirse varias veces en el mismo lugar.

Se conocen al menos 138 calderas que superan los 5 km de diámetro. Muchas de estas calderas son difíciles de ubicar, por lo que han sido identificadas con imágenes de satélites. Entre las más importantes se encuentra La Garita con unos 32 km de diámetro y una longitud de 80 que está ubicada en las montañas de San Juan al sur del estado de Colorado.

Erupciones fisurales y llanuras de lava


Volcán Laki en Islandia.

A pesar de que las erupciones volcánicas están relacionadas con estructuras en forma de cono, la mayor parte del material volcánico es extruido por fracturas en la corteza denominadas fisuras. Estas fisuras permiten la salida de lavas de baja viscosidad que recubren grandes áreas. La llanura de Columbia en el noroeste de los Estados Unidos se formó de esta manera. Las erupciones fisurales expulsaron lava basáltica muy líquida. Las coladas siguientes cubrieron el relieve y formaron una llanura de lava (plateau) que en algunos lugares tiene casi 1,5 km de grosor. La fluidez se evidencia en la superficie recorrida por la lava: unos 150 km desde su origen. A estas coladas se las denomina basaltos de inundación (flood basalts).

Este tipo de coladas sucede fundamentalmente en el suelo oceánico y no puede verse. A lo largo de las dorsales oceánicas, donde la expansión del suelo oceánico es activa, las erupciones fisurales generan nuevo suelo oceánico. Islandia está ubicada encima de la dorsal centroatlántica y ha experimentado numerosas erupciones fisurales. Las erupciones fisurales más grandes de Islandia ocurrieron en 1783 y se denominaron erupciones de Laki. Laki es una fisura o volcán fisural de 25 km de largo que generó más de 20 chimeneas separadas que expulsaron corrientes de lava basáltica muy fluida. El volumen total de lava expulsada por las erupciones de Laki fue superior a los 12 km³. Los gases arruinaron las praderas y mataron al ganado islandés. La hambruna subsiguiente mató cerca de 10.000 personas. La caldera está situada muy por debajo de la boca del volcán.

Domo de lava


Domos de lava en el cráter del Monte Santa Helena (Estados Unidos).

La lava rica en sílice es viscosa y por lo tanto, apenas fluye; cuando es extruida fuera de la chimenea puede producir una masa bulbosa de lava solidificada que se denomina domo de lava. Debido a su viscosidad, la mayoría está compuesto por riolitas y otros por obsidianas. La mayoría de los domos volcánicos se desarrollan a partir de una erupción explosiva de un magma rico en gases.

Aunque la mayoría de los domos volcánicos están asociados a conos compuestos, algunos se forman de manera independiente. Tal es el caso de la línea de domos riolíticos y de obsidiana en los cráteres Mono en California.

Chimeneas y pitones volcánicos


Teide el tercer volcán más grande del mundo desde su base.

Los volcanes se alimentan del magma a través de conductos denominados chimeneas. Estas tuberías pueden extenderse hasta unos 200 km de profundidad. En este caso, las estructuras proveen de muestras del manto que han experimentado muy pocas alteraciones durante su ascenso.

Las chimeneas volcánicas mejor conocidas son las sudafricanas que están cargadas de diamantes. Las rocas que rellenan estas chimeneas se originaron a profundidades de 150 km, donde la presión es lo bastante elevada como para generar diamantes y otros minerales de alta presión.

Debido a que los volcanes están siendo rebajados constantemente por la erosión y la meteorización, los conos de cenizas son desgastados con el tiempo, pero no sucede lo mismo con otros volcanes. Conforme la erosión progresa, la roca que ocupa la chimenea y que es más resistente, puede permanecer de pie sobre el terreno circundante mucho después de que haya desaparecido el cono que la contiene. A estas estructuras de las denomina pitón volcánico. Shiprock, en Nuevo México, es un claro ejemplo de este tipo de estructuras.

No hay comentarios:

Publicar un comentario

Deja tu comentario